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Dataset




1) Yummly
e Qver 157K recipes in more that 200 cuisines (extracted from
Wikipedia).
* More than 3K unique ingredients after
* Recipes contain ingredients, flavors, nutrition data, and user
ratings.
1) BBC Food
* More than 1000 unique ingredients.
* Used for ingredient standardization process.
1) Country Health Statistics
* Diabetes prevalence estimates from the World Bank.
* Health expenditure as a fraction of GDP from the World Bank.

* QObesity prevalence from World Health Organization.



Characterizing Cuisines



Diversity of Ingredients

1) Global Diversity

* What is the number of ingredients present in a certain cuisine?
1) Local Diversity

* Do different dishes usually share ingredients or have different

sets of ingredients?
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Figure 1: Diversity of ingredients around the world



Complexity of Dishes
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Figure 4: Complexity of dishes around the world



Notable Ingredients

) Ingredients as cuisine signatures
* Some ingredients are widely used, some others are local to
specific cuisines.
* Notable ingredients tend to signify different cuisines.

* ATF-IDF based method is used to recognize notable ingredients.
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Figure 5: Notable ingredients in Italian, Indian, and Mexican cuisines. More notable ingredients have been drawn larger.



Similarity between Cuisines




Similarity of Cuisines

I Similarity point of views:
* Ingredient-based similarity
* Flavor-based similarity
) Ingredient-based similarity:
* Each cuisine is modeled as a
* Jensen-Shannon divergence is used to measure the similarity:
JS(P,Q) =%[KL(P I M)+ KL(Q | M)], M=%(P+Q)
1 Flavor-based similarity:

* Each cuisine is modeled as a

*  Symmetrized Kullback-Leibler divergence is used as a distance

metric:
[KL(P Il Q) + KL(Q Il P)]
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Similarity of Cuisines
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(b) Flavor-based similarity

Figure 6: Graph of similarity between different cuisines in terms of their ingredients and flavors. Each cuisine is linked with five
most similar ones. Color of a cuisines denote the geographical region it resides in.
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Cuisine Classification




Cuisine Classification

13 Task
* Assigning a recipe to a cuisine (or a region) based on its
ingredients.
1) Classifiers
* Support Vector Machines

* Deep Neural Networks
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Figure 7: The prediction performance of different methods for 13

cuisine and region prediction tasks.



Health and Nutrition




Health and Nutrition

1) Nutrients: Table 2: Correlation of Different Health Measures with Nutri-
tion Values of Recipes

* Carbohydrate

Correlation Values

e Calorie Health Measure  Nutrient Pearson  Kendall-Tao
Calorie —0.104 —0.110

e Fat Protein —0.483 —0.299
Obesity Fat —0.115 —0.127

. Carbohydrate 0.300 0.201

* Protein Sugar 0.461 0.293
. Sugar Calorie —0.077 —0.048
Protein —0.162 —0.022

Diabetes Fat —0.123 —0.063

Carbohydrate 0.173 0.106

Sugar 0.142 0.066

I3 Health Statistics: TR 0,098 0110
. Protein —0.083 —0.022

* Diabetes Health Expend.  Fat 0.197 0.141
Carbohydrate —0.064 —0.015

* Obesity Sugar 0.134 0.069

* Health Expenditure
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Conclusion




Conclusion

1) Results:

* Diversity of ingredients varies largely across the continents,
mostly affected by migration trends.

* Strong similarities found between cuisines in neighboring
countries.

* Clear correlation exists between obesity and cuisines that
featured more sugar and carbohydrates.

* Protein-rich cuisines associates with
fewer health problems. —

caE——
1 Future Work: G

* Recipe recommendation

* Modeling flavors with ingredients

* Ranking healthiest cuisines 17



Thank You!

Any Questions?

sajadmanesh@ce.sharif.edu
g.stringhini@ucl.ac.uk
@gianluca_string
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