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INTRODUCTION AND MOTIVATION



INTRODUCTION

Graphs are ubiquitous

Social Networks Molecules Knowledge Graphs

Image source (from left to right): https://yashuseth.blog/2019/10/08/introduction-question-answering-knowledge-graphs-kgqa/, https://en.wikipedia.org/wiki/Terpenoid,

https://yashuseth.blog/2019/10/08/introduction-question-answering-knowledge-graphs-kgqa/ 2/45

https://towardsdatascience.com/ab-testing-challenges-in-social-networks-e67611c92916
https://en.wikipedia.org/wiki/Terpenoid
https://yashuseth.blog/2019/10/08/introduction-question-answering-knowledge-graphs-kgqa/


MACHINE LEARNING TASKS OVER GRAPHS

Node Classification / Regression

• Given a graph, which is the class label / value of a node?

• Example: face account detection

Image Source: ”A gentle introduction to graph neural networks” by Andreas Loukas. 3/45



MACHINE LEARNING TASKS OVER GRAPHS

Link Prediction
• Given a graph, which links are likely to form?

• Example: recommendation systems

[Ahmad et al., 2020]
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MACHINE LEARNING TASKS OVER GRAPHS

Graph Classification
• Given a graph, predict its label

• Example: antibiotic discovery

Antibiotic? Or Not

Image source: https://en.wikipedia.org/wiki/Terpenoid 5/45

https://en.wikipedia.org/wiki/Terpenoid


MACHINE LEARNING TASKS OVER GRAPHS

Graph Decoding to Structured Data
• Given a graph, what is the corresponding structures representation?

• Example: graph to text, graph to image, . . .

[Johnson et al., 2018]
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GRAPH REPRESENTATION LEARNING

Graph Representation Learning
• A key step to applying machine learning algorithms over graphs

• Learn representation of nodes (or graphs) in a low-dimensional space

• Graph embeddings algorithms: learn node embeddings directly from topological structure

• Graph neural networks: learn how to compute node representation based on local network
neighborhood

[Perozzi et al., 2014] 7/45



MOTIVATION

Graphs could be sensitive

• Users’ personal attributes, financial transactions, medical/biological networks, . . .

• Machine learning algorithms should preserve the privacy of individuals in graph data

Private Machine Learning on Graphs
• Privacy-preserving ML methods are mostly designed for non-relational data

• Specific techniques need to be developed to address privacy issues in graphs

• Privacy-preserving graph representation learning tries to fill this gap
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GRAPH NEURAL NETWORKS



GRAPH EMBEDDING

Input: Graph G = (V, E), with node set V and link set E

Objective: Embed each node into a continuous vector space such that similarity in the
embedding space approximates similarity in the graph:

similarity(u, v) ≈ zTuzv

[Perozzi et al., 2014]
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THE POWER OF DEEP LEARNING

Modern deep learning excels at exploiting grid-structured data

Image source: https://en.wikipedia.org/wiki/Convolutional_neural_network 10/45

https://en.wikipedia.org/wiki/Convolutional_neural_network


GRAPH-STRUCTURED DATA

But graphs are combinatorial structures, have arbitrary sizes, and contain multi-modal
information

Social Networks Molecules Knowledge Graphs

Image source (from left to right): https://yashuseth.blog/2019/10/08/introduction-question-answering-knowledge-graphs-kgqa/, https://en.wikipedia.org/wiki/Terpenoid,

https://yashuseth.blog/2019/10/08/introduction-question-answering-knowledge-graphs-kgqa/ 11/45

https://towardsdatascience.com/ab-testing-challenges-in-social-networks-e67611c92916
https://en.wikipedia.org/wiki/Terpenoid
https://yashuseth.blog/2019/10/08/introduction-question-answering-knowledge-graphs-kgqa/


GRAPH CONVOLUTION

Image Convolution Graph Convolution

Slide adapted from ”A gentle introduction to graph neural networks” by Andreas Loukas. 12/45



INSIDE THE GRAPH CONVOLUTION

Input: an input representation vector hv for each node v

Output: a new representation vector h′
v for each node v

h′
v = f

(
{hu : u ∈ N (v)}

)
= UPDATE

(
AGGREGATE

(
{hu : u ∈ N (v)}

))
• AGGREGATE is a permutation invariant function (e.g., sum, mean, max)

• UPDATE is a neural network (e.g., MLP)

Slide adapted from ”A gentle introduction to graph neural networks” by Andreas Loukas. 13/45



SPECIAL CASES

Graph Convolutional Network (GCN) [Kipf and Welling, 2017]

AGGREGATE
(
{hu : u ∈ N (v)}

)
=

∑
u∈N (v)

hu√
|N (u)|

√
|N (v)|

Graph Sample and Aggregate (GraphSAGE) [Hamilton et al., 2017]

AGGREGATE
(
{hu : u ∈ N (v)}

)
= CONCAT

(
hv , MEAN

(
{hu : u ∈ N (v)}

))
Graph Isomorphism Network (GIN) [Xu et al., 2018]

AGGREGATE
(
{hu : u ∈ N (v)}

)
= (1+ ϵ) · hv + SUM

(
{hu : u ∈ N (v)}

)
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THE GRAPH NEURAL NETWORK MODEL

Input : Graph G = (V, E); Feature matrix X ∈ R|V×d|

Output: Embedding vector zv for all v ∈ V
Initialization: h0

v = xv for all v ∈ V
for l = 1 to L do

foreach node v ∈ V do
hl
N (v) = AGGREGATEl

(
{hl−1

u : u ∈ N (v)}
)

hl
v = UPDATEl

(
hl
N (v)

)
end

end
return zv = hL

v : for all v ∈ V

You can feed these embeddings into any loss function to
train the network parameters
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PRIVACY ATTACKS ON GRAPH NEURAL
NETWORKS

[Duddu et al., 2020] Quantifying Privacy Leakage in Graph
Embedding, NeurIPS PPML
[He et al., 2021] Stealing Links from Graph Neural Networks,
USENIX Security



POTENTIAL ATTACKS ON GNNS

Membership Inference Attack
• Infer whether a given node is part of the target graph

Attribute Inference Attack
• Infer sensitive attributes of a node in the target graph

Link Inference Attack
• Infer whether a given pair of nodes are connected in the target graph

16/45



THREAT MODEL

Adversary have back-box access to a trained GNN
• The GNN is trained for node classification

• The GNN can be queried to retrieve embeddings or
predictions

Example
• GNN-based fake account detection service

• Machine Learning as a Service

• Publishing graph embeddings for research purposes

Different attacks may need extra background knowledge
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MEMBERSHIP INFERENCE ATTACK

Exploits the statistical difference between the prediction confidence on training and
testing data

• GNNs are more confident when predicting labels for the training data

• Nodes with high output confidence are likely members of the training graph

[Duddu et al., 2020]
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MEMBERSHIP INFERENCE ATTACK

Confidence Attack (unsupervised)
• Compare the highest prediction confidence of the given node to a threshold

• If above the threshold, then member

Shadow Attack (supervised)
• Uses an auxiliary graph sampled from the training graph

• Train a similar GNN over the auxiliary graph and get predictions

• Train a binary classifier with prediction scores as features to predict the membership status in
the auxiliary graph

• Predict the membership of nodes in the original graph using the learned classifier
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MEMBERSHIP INFERENCE ATTACK

Adversary advantage metric
• Estimates model information leakage compared to the random guess

Iadv = 2× (Acc− 0.5)

[Duddu et al., 2020]
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ATTRIBUTE INFERENCE ATTACK

Exploits the fact that similar users have similar attributes
• Similar users are connected

• The connectivity of users is captured by embeddings

Requirements
• Needs embeddings, not predictions

• Requires an subset of nodes with sensitive attributes revealed

21/45



ATTRIBUTE INFERENCE ATTACK

Attack Methodology
• Train a classifier with the embedding of the auxiliary graph’s nodes as features and their
sensitive attribute as label

• Use the trained classifier to predict the sensitive attribute of any given node in the original
graph

[Duddu et al., 2020]
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LINK INFERENCE ATTACK

Exploits the similarity of prediction posteriors for connected nodes
• If two nodes are connected, then their prediction scores are likely similar

Requirements
• Requires access to an auxiliary subgraph of the original graph
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LINK INFERENCE ATTACK

Attack Methodology
• Obtain the prediction scores from the target GNN for every node pair in the auxiliary graph
• Extract features from the obtained scores for each node pair

• features based on distance metrics (cosine, euclidean, etc), vector operations (average, hadamard
product, etc), and entropy

• Train an MLP using the extracted features and the link state in the auxiliary graph

• Use the trained MLP to infer the link between any node pair in the original graph
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LINK INFERENCE ATTACK

[He et al., 2021]
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PRIVACY-PRESERVING GRAPH
NEURAL NETWORK MODELS



PRIVACY-PRESERVING GRAPH NEURAL NETWORK MODELS

Adversarial Privacy-Preserving
Graph Embedding Against Inference
Attack [Li et al., 2020]

• Setting: graph embeddings are
released publicly

• Goal: preserving information
about the graph structure and
utility node attributes

• Privacy: mitigating the inference
of sensitive node attributes

• Approach: adversarial learning
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PRIVACY-PRESERVING GRAPH NEURAL NETWORK MODELS

Privacy-Preserving GNN for Node
Classification [Zhou et al., 2020]

• Setting: the graph is partitioned
vertically across multiple parties

• Goal: learning a global GNN
collaboratively

• Privacy: keep node features and
link information local to each
party

• Approach: split learning + secure
multiparty computation
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PRIVACY-PRESERVING GRAPH NEURAL NETWORK MODELS

Federated Dynamic GNN with
Secure Aggregation [Jiang et al., 2020]

• Setting: each camera has its own
graph sequence

• Goal: learning a global GNN
collaboratively to predict future
object positions

• Privacy: keep node features and
link information local to each
camera

• Approach: federated learning +
secure multiparty computation

28/45



LOCALLY PRIVATE GRAPH NEURAL
NETWORKS

[Sajadmanesh and Gatica-Perez, 2020]



PROBLEM DEFINITION

Privacy-Preserving GNN learning with
node-level privacy

Setting:
• The server has access to a graph
• Each node has a private feature vector
• Node features are inaccessible by the server

Problem:
• How to learn a GNN without letting the
private features leave the nodes?

29/45



INFEASIBLE SOLUTION

Why not federated learning?
• Message passing must be done at node side
• Each node requires the private features of its adjacent nodes

• If sent in plain text → privacy violation!
• If sent using SMC → FL + SMC = massive communication!

• Result: message passing at node side is not feasible

30/45



OUR APPROACH

Let’s keep the model on the server
• We only need to calculate the first layer’s AGGREGATE
function privately!

• SMC? It’s vulnerable to differential attack!

Idea: make AGGREGATE differentially private by input
perturbation!

• Individual features are not necessary, only aggregated
features are needed

• Node features can be privatized by injecting noise using
Local Differential Privacy (LDP)

• The neighborhood aggregation will cancel out the injected
noise in the features

31/45



BACKGROUND

Local Differential Privacy [Kasiviswanathan et al., 2011]

• De facto standard for computing aggregated statistics over private data

• Key idea: data holders send perturbed data to the aggregator that are meaningless
individually, but can approximate the target statistic when aggregated.

• Composed of two steps:
1. Data collection: each data holder perturbs his data x using a randomized mechanism M, returning

y = M(x) to the aggregator.
2. Estimation: the aggregator computes the target statistic (e.g. mean)

• Randomization in M provides plausible deniability to data holders

• However, the aggregator must not be able to infer initial data x by observing y and having
arbitrary background knowledge
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BACKGROUND

Local Differential Privacy
Given ϵ > 0, a randomized mechanism M satisfies ϵ-local differential privacy if for all
possible pairs of user’s private data x and x′, and for all possible outputs y of M, we
have:

Pr[M(x) = y] ≤ eϵ Pr[M(x′) = y]

Interpretation

• Any input value x is almost as likely (depending on ϵ) to produce the same output y

• An adversary cannot distinguish between x and x′ by observing y
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BIG PICTURE

The outline of our locally private GNN (LPGNN) algorithm
1. Each node perturbs its private feature vector using an LDP mechanism and sends it to the

server

2. The server uses the received perturbed feature vectors and estimates the first layer’s
AGGREGATE function

3. The training proceeds with forward and backward propagation as usual

4. Return to step 2 if stopping criteria has not met

But it’s not that easy! there are challenges...
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CHALLENGES

Challenge #1: High-dimensional features
• The total privacy budget for a single node scales with the number of features
→Too much privacy leakage!

• Trivial solution: perturb individual features with ϵ/d privacy budget
→Too much noise!
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ADDRESSING CHALLENGE #1

Multi-bit mechanism: multidimensional
feature perturbation

• Uniformly sample m features out of d ones
without replacement

• Perturb each sampled feature with ϵ/m
privacy budget

• Map the output of the 1-bit mechanism to
either -1 or 1

• For the rest of the features (not sampled)
return 0

Algorithm 1: Multi-Bit Mechanism
Input : feature vector x ∈ [α, β]d ; privacy budget

ϵ > 0; range parameters α and β; sampling
parameter m ∈ {1, 2, . . . , d}.

Output: perturbed vector x∗ ∈ {−1, 0, 1}d.
1 Let S be a set of m values drawn uniformly at

random without replacement from {1, 2, . . . , d}
2 for i ∈ {1, 2, . . . , d} do
3 si = 1 if i ∈ S otherwise si = 0

4 ti ∼ Bernoulli
(

1
eϵ/m+1 +

xi−α
β−α

· eϵ/m−1
eϵ/m+1

)
5 x∗i = si · (2ti − 1)
6 end
7 return x∗ = [x∗1 , . . . , x∗d ]

T
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ADDRESSING CHALLENGE #1

Approximation of Graph Convolution
• The server can estimate the first layer’s graph convolution by:

x′u =
d(β − α)

2m · e
ϵ/m + 1

eϵ/m − 1 · x∗u +
α+ β

2
ĥN (v) = AGGREGATE

(
{x′u,∀u ∈ N (v)}

)
hv = UPDATE

(
ĥN (v)

)
Theorem 3.1

The multi-bit mechanism satisfies ϵ-LDP for each node.

Proposition 3.5
The optimal value of the sampling parameter m in the multi-bit mechanism is:
m⋆ = max(1,min(d,

⌊
ϵ

2.18
⌋
))
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CHALLENGES

Challenge #2: Small-size neighborhood

• Lots of the nodes have too few neighbors (remember Power-Law degree distribution?)

• The neighborhood aggregator cannot cancel out the noise if the neighborhood size is small
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ADDRESSING CHALLENGE #2

KProp convolution layer: neighborhood
expansion method

• Expands the neighborhood to the nodes
that are up to K-hops away

• Applies K consecutive AGGREGATE function

• Applies the UPDATE function after the K-th
AGGREGATE

• Trade-off between the aggregation
estimation error and the GNN expressive
power

Algorithm 2: KProp Convolution Layer
Input : Graph G = (V, E, X); linear aggregator

function AGGREGATE; Non-linear update
function UPDATE; step parameter K ≥ 1;

Output: embedding vector hv, ∀v ∈ V
1 for all v ∈ V do in parallel
2 h0N (v) = xv
3 for k = 1 to K do
4 hkN (v) =

AGGREGATE
(
{hk−1

N (u), ∀u ∈ N (v)− {v}}
)

5 end
6 hv = UPDATE

(
hKN (v)

)
7 endfor
8 return {hv, ∀v ∈ V}
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EXPERIMENTS

Statistics of Datasets

DATASET #CLASSES #NODES #EDGES #FEATURES AVG. DEG.

CORA 7 2,708 5,278 1,433 3.90
CITESEER 6 3,327 4,552 3,703 2.74
PUBMED 3 19,717 44,324 500 4.50

FACEBOOK 4 22,470 170,912 4,714 15.21
GITHUB 2 37,700 289,003 4,005 15.33
LASTFM 18 7,624 27,806 7,842 7.29
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EXPERIMENTS

Comparison methods

• GCN+RAW: A standard two-layer GCN trained on raw features (non-private)

• LPGNN: A two layer GNN (KProp as the first, GCN as the second layer) trained on perturbed
features using the multi-bit mechanism (locally-private)

• GCN+RND: Similar to GCN+RAW, but trained on random features (fully-private)

• GCN+OHD: Similar to GCN+RAW, but trained on “one-hot degree” features (fully-private)
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ANALYSIS OF ACCURACY-PRIVACY TRADE-OFF

Micro-F1 score of different methods for node classification under varying privacy budget (ϵ)

DATASET GCN LPGNN GCN GCN
+RAW ϵ = 0.1 ϵ = 0.5 ϵ = 1.0 ϵ = 2.0 +RND +OHD

CORA 87.5 ± 0.2 81.4 ± 4.8 83.3 ± 1.5 83.6 ± 1.1 83.6 ± 0.7 58.1 ± 7.8 29.3 ± 0.2
CITESEER 74.1 ± 0.3 64.5 ± 1.1 66.0 ± 1.0 66.5 ± 0.9 66.8± 0.8 29.6 ± 6.5 27.2 ± 0.1
PUBMED 87.6 ± 0.1 81.9 ± 0.3 82.0 ± 0.3 82.2 ± 0.3 82.2 ± 0.3 53.5 ± 1.1 50.3 ± 0.1

FACEBOOK 94.9 ± 0.1 92.4 ± 0.5 93.2 ± 0.3 93.4 ± 0.3 93.4 ± 0.3 31.8 ± 2.1 63.8 ± 0.3
GITHUB 87.1 ± 0.1 84.1 ± 3.4 85.7 ± 0.8 86.1 ± 0.3 86.2 ± 0.1 74.3 ± 0.0 83.7 ± 0.0
LASTFM 88.2 ± 0.3 76.3 ± 1.5 82.7 ± 1.6 84.3± 0.8 84.8 ± 0.7 21.8 ± 1.2 45.3 ± 0.7
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EFFECT OF THE MULTI-BIT MECHANISM

Mean absolute error of the multi-bit (MBM), 1-bit (1BM), and the Analytic Gaussian (AGM)
mechanisms in estimating the neighborhood aggregation
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RESEARCH DIRECTIONS AND
CONCLUSION



OPEN RESEARCH DIRECTIONS

Differentially Private GNNs
• How to build privacy-preserving GNNs satisfying graph-based notions of differential privacy?

• Edge-DP and Node-DP?

Privacy-Preserving Distributed GNN Learning
• How to remove the trusted server in multi-party GNN training?

• Multi-layer networks?

Privacy-Preserving Deep Graph Learning
• How to learn a latent graph from private data?

• Privacy-preserving graph-based classifier?

44/45



CONCLUSION

Graphs are likely to be sensitive
• social connections, financial transactions, disease outbreak, . . .

Graph representation algorithms are vulnerable to privacy attacks
• Simple but effective attacks has already been proposed

Common privacy-preserving ML methods cannot trivially be applied on graphs
• e.g., the exhaustive communication cost of federated learning

Privacy-preserving graph representation learning aims to address privacy issue of
applying deep learning over graphs

• This is a new-born field of research with lots of opportunities and open questions

If you are interested, please get in touch!
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THANK YOU!

Questions? @sajadmanesh
sajadmanesh@idiap.ch

https://twitter.com/sajadmanesh
mailto:sajadmanesh@idiap.ch
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