

LOCALLY PRIVATE GRAPH NEURAL NETWORKS

Sina Sajadmanesh Daniel Gatica-Perez

IDIAP RESEARCH INSTITUTE SWISS FEDERAL INSTITUTE OF TECHNOLOGY (EPFL)

Twitter Machine Learning Seminar Jan 7, 2021

Privacy-Preserving GNN learning with node-level privacy

Setting:

- The server has access to a graph
- · Each node has a private feature vector
- · Node features are inaccessible by the server

Problem:

• How to learn a GNN without letting the private features leave the nodes?

integrate updates

INSIDE THE GNN

Input: a representation vector **h**_v for each node v (initially node features)

Output: a new representation vector \mathbf{h}'_{v} for each node v

INSIDE THE GNN

Input: a representation vector \mathbf{h}_v for each node v (initially node features)

Output: a new representation vector \mathbf{h}'_{v} for each node v

$$\begin{aligned} \mathbf{h}'_{v} &= f(\{\mathbf{h}_{u} : u \in \mathcal{N}(v)\}) \\ &= \mathsf{UPDATE}\left(\mathsf{AGGREGATE}\left(\{\mathbf{h}_{u} : u \in \mathcal{N}(v)\}\right)\right) \end{aligned}$$

- UPDATE is a neural network (e.g., MLP)
- AGGREGATE is a permutation invariant function, e.g., sum, mean, max, or:

 $\begin{array}{ll} \text{GCN:} & SUM\left(\frac{h_u}{\sqrt{|\mathcal{N}(u)| \cdot |\mathcal{N}(v)|}} : u \in \mathcal{N}(v)\right) \\ \text{GraphSAGE:} & CONCAT\left(h_v, \ MEAN\left(\{h_u : u \in \mathcal{N}(v)\}\right)\right) \end{array}$

INSIDE THE GNN

Input: a representation vector \mathbf{h}_v for each node v (initially node features)

Output: a new representation vector \mathbf{h}'_{v} for each node v

$$\mathbf{h}'_{v} = \mathbf{f}(\{\mathbf{h}_{u} : u \in \mathcal{N}(v)\})$$

= UPDATE (AGGREGATE ({ $\mathbf{h}_{u} : u \in \mathcal{N}(v)$ }))

- UPDATE is a neural network (e.g., MLP)
- AGGREGATE is a permutation invariant function, e.g., sum, mean, max, or:

 $\begin{array}{ll} \text{GCN:} & SUM\left(\frac{h_u}{\sqrt{|\mathcal{N}(u)| \cdot |\mathcal{N}(v)|}} : u \in \mathcal{N}(v)\right) \\ \text{GraphSAGE:} & CONCAT\left(h_v \ , \ MEAN\left(\{h_u : u \in \mathcal{N}(v)\}\right)\right) \end{array}$

BACK TO FEDERATED LEARNING

What's the problem with federated learning?

- AGGREGATE must be computed at node side
- Nodes require the private features of their neighbors
 - If sent in plain text → privacy violation!
 - · If sent using SMC \rightarrow massive communication!

OUR APPROACH

Let's keep the model on the server

- Private node features are only needed in the first layer of the GNN
- We only need to compute the first layer's AGGREGATE function privately!

OUR APPROACH

Let's keep the model on the server

- Private node features are only needed in the first layer of the GNN
- We only need to compute the first layer's AGGREGATE function privately!
- But an exact computation of AGGREGATE is vulnerable to differencing attack!

Our Approach

Let's keep the model on the server

- Private node features are only needed in the first layer of the GNN
- We only need to compute the first layer's AGGREGATE function privately!
- But an exact computation of AGGREGATE is vulnerable to differencing attack!
- Idea: privately estimate the AGGREGATE function using Local Differential Privacy!

Background

Local Differential Privacy

- An **untrusted data aggregator** wishes to compute an aggregate function over a **private dataset**
- Data holder *i* perturbs his data x_i using a **randomized** mechanism \mathcal{M} , returning $x'_i = \mathcal{M}(x_i)$ to the aggregator
- The aggregator computes the target statistic using an **estimator function**

Background

Local Differential Privacy

- An **untrusted data aggregator** wishes to compute an aggregate function over a **private dataset**
- Data holder *i* perturbs his data x_i using a **randomized** mechanism \mathcal{M} , returning $x'_i = \mathcal{M}(x_i)$ to the aggregator
- The aggregator computes the target statistic using an **estimator function**

Definition

a randomized mechanism \mathcal{M} satisfies ϵ -LDP if for all pairs of private data x_1 and x_2 , and for all outputs x' of \mathcal{M} , we have:

$$\Pr[\mathcal{M}(X_1) = X'] \le e^{\epsilon} \Pr[\mathcal{M}(X_2) = X']$$

OUR SOLUTION

Private neighborhood aggregation with LDP

- Node features are perturbed by injecting noise
 - The LDP mechanism should be **unbiased**, i.e., $\mathbb{E}[\mathcal{M}(x)] = x$
- The neighborhood aggregation will cancel out the injected noise
 - AGGREGATE should be a weighted summation, as in GCN, GIN, ...

Locally Private GNN (LPGNN)

Node-Side:

- 1. Perturb the private feature vector \mathbf{x}_i using the LDP mechanism
 - $\mathbf{x}'_i = \mathcal{M}(\mathbf{x}_i)$ and send \mathbf{x}'_i to the server

Server-Side:

- 1. Estimate the first layer's AGGREGATE function for every node using the perturbed feature vectors
- 2. Proceed with forward and backward propagation as usual
- 3. Return to step 2 if stopping criteria has not met

Challenge #1: High-dimensional features

- The total privacy budget of a node scales with the number of features
 - · Give every single feature a small privacy budget→Too much privacy leakage!
 - Keep the total privacy budget of a node small→Too much noise!

Addressing Challenge #1

Multi-bit mechanism: multidimensional feature perturbation

- Randomly **sample** *m/d* **features** without replacement
- Perturb each sampled feature with ϵ/m privacy budget using 1-bit mechanism
- Map the output of the 1-bit mechanism to either -1 or 1
- For the rest of the features (not sampled) return 0

Theorem 3.1

The multi-bit mechanism satisfies ϵ -LDP for each node.

Proposition 3.5

The **optimal value** of the sampling parameter *m* in the multi-bit mechanism is: $m^* = \max(1, \min(d, \lfloor \frac{\epsilon}{2.18} \rfloor))$

Challenge #2: Small-size neighborhood

- Lots of the nodes have too few neighbors (Power-Law degree distribution)
- The neighborhood aggregator cannot cancel out the noise if the neighborhood size is small

KProp convolution layer: neighborhood expansion method

- Expands the neighborhood to the nodes that are up to K-hops away
- Applies K consecutive AGGREGATE function
- Applies the UPDATE function after the *K*-th AGGREGATE
- Trade-off between the aggregation estimation error and over-smoothing

Learning Task

• Node Classification

Comparison methods

- · GCN+RAW: A standard two-layer GCN trained on raw features (non-private)
- LPGNN: A two layer GNN (KProp as the first, GCN as the second layer) trained on perturbed features using the multi-bit mechanism (locally-private)
- GCN+RND: Similar to GCN+RAW, but trained on random features (fully-private)
- GCN+OHD: Similar to GCN+RAW, but trained on "one-hot degree" features (fully-private)

DATASET	#CLASSES	#Features	Avg. Degree	
Cora	7	1,433	3.90	
Citeseer	6	3,703	2.74	
Pubmed	3	500	4.50	
Facebook	4	4,714	15.21	
GITHUB	2	4,005	15.33	
LASTFM	18	7,842	7.29	

Micro-F1 score of different methods for node classification

DATASET	GCN	LPGNN				GCN	GCN
	+Raw	$\epsilon = 0.1$	$\epsilon = 0.5$	$\epsilon = 1.0$	$\epsilon = 2.0$	+Rnd	+Онр
Cora	85.0 ± 0.5	84.6 ± 0.5	84.6 ± 0.6	84.6 ± 0.6	84.6 ± 0.6	78.1 ± 1.3	58.4 ± 0.7
Citeseer	73.7 ± 0.5	68.6 ± 0.8	68.4 ± 0.7	68.6 ± 0.9	68.6 ± 0.8	58.3 ± 4.1	38.5 ± 0.9
Pubmed	87.0 ± 0.2	82.1 ± 0.2	82.2 ± 0.3	82.2 ± 0.3	82.2 ± 0.3	56.5 ± 2.2	62.4 ± 0.9
Facebook	94.8 ± 0.1	94.0 ± 0.1	94.0 ± 0.2	94.0 ± 0.2	94.0 ± 0.2	40.6 ± 1.2	79.2 ± 0.3
GITHUB	86.7 ± 0.2	85.9 ± 0.1	85.9 ± 0.2	85.9 ± 0.2	85.9 ± 0.1	74.4 ± 0.1	84.0 ± 0.1
LastFM	87.7 ± 0.4	86.1 ± 0.3	86.1 ± 0.3	86.1 ± 0.2	86.1 ± 0.3	25.2 ± 7.1	70.6 ± 0.5

RESULTS: EFFECT OF THE MULTI-BIT MECHANISM

Average L1 distance between the true and estimated neighborhood aggregation obtained by the multi-bit (MBM), 1-bit (1BM), and the Analytic Gaussian (AGM) mechanisms

RESULTS: EFFECT OF THE KPROP LAYER

Effect of the KProp step parameter (K) on the performance of LPGNN (ϵ = 1)

RESULTS: EFFECT OF THE LABEL RATE

Effect of the label rate on the performance of LPGNN (ϵ = 1)

Summary

- Proposed a privacy-preserving GNN based on local differential privacy
- · Demonstrated promising results in terms of accuracy-privacy trade-off
- Works better on graphs with higher average degree

Future Work

- Protect privacy of graph topology
- Relationship to adversarial robustness
- Expressive power of private graph networks

THANK YOU!

Questions?

@sajadmanesh 💟 sajadmanesh@idiap.ch 💌 https://arxiv.org/pdf/2006.05535.pdf 🗙