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Introduction

I Graph Neural Networks (GNNs) are state-of-the-art algorithms for learning on graphs

• Tasks: node classification, link prediction, …
• Applications: recommendation systems, credit issuing, traffic forecasting, drug discovery, …

I Graph data could be privacy-sensitive and contain personal information

• e.g., social networks, financial networks, …

I GNN’s are vulnerable to privacy attacks

• Link stealing attack [He et al., 2021a, Wu et al., 2021]
• Node membership inference attack [Olatunji et al., 2021, He et al., 2021b]

Our Goal:

Making GNNs privacy-preserving using Differential Privacy
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Graph Neural Networks

A: Adjacency matrix

X: Input node features

Y: Predicted node labels

H(i): Hidden node representations of layer i

Agg: Aggregation function

• e.g., summation: Agg(H, A) = AT · H

Upd: Learnable update function

• e.g., an MLP

GNN 
Layer

GNN 
Layer

GNN 
Layer
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Differential Privacy

I An algorithm is executed on the private dataset and the output is publically released

I An adversary should not be able to learn about the private dataset by analyzing the output

Algorithm OutputPrivate Dataset
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Differential Privacy

Differential Privacy [Dwork et al., 2006]

Randomized algorithm A is (ε, δ)-differentially private if for all neighboring datasets D ' D′

and all sets of outputs S:

Pr[A(D) ∈ S] ≤ e
ε Pr[A(D′) ∈ S] + δ

Neighboring 
Datasets

DP Algorithm 
(Randomized)

Similar Output 
Distributions
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Differential Privacy

Differential Privacy [Dwork et al., 2006]

Randomized algorithm A is (ε, δ)-differentially private if for all neighboring datasets D ' D′

and all sets of outputs S:

Pr[A(D) ∈ S] ≤ e
ε Pr[A(D′) ∈ S] + δ

I The probability bound captures how much protection we get

• ε quantifies information leakage

• Often called privacy budget

• δ allows for a small probability of failure

• Usually very small (δ << inverse number of records)

4/24



Differential Privacy

Differential Privacy [Dwork et al., 2006]

Randomized algorithm A is (ε, δ)-differentially private if for all neighboring datasets D ' D′

and all sets of outputs S:

Pr[A(D) ∈ S] ≤ e
ε Pr[A(D′) ∈ S] + δ

I The neighboring relation captures what is protected

• Standard DP: D and D′ differ by at most one record
• Edge-level DP: D and D′ are graphs differing by at most one edge
• Node-level DP: D and D′ are graphs differing by at most one node (and all its adjacent edges)
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Differentially Private ML

Differentially private learning is possible with noisy gradient descent

Optimization Algorithm
(Private SGD)

Private Training
Dataset

Model ParametersDifferentially private learning is possible with 
noisy gradient descent.

71

add noise to each step 
to guarantee privacy

Stochastic Gradient Descent DP Stochastic Gradient Descent
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Differentially Private ML

DP-SGD Algorithm [Abadi et al., 2016]

input : Data {~x1 . . . ,~xN}, learning rate η, batch size B, epochs T , clipping threshold C, noise variance σ2,

1 Initialize ~θ0 randomly

for t ∈ [T · N
B
] do

2 Sample a batch ~Bt by selecting each ~xi independently with probability B
N

3 For each ~xi ∈ ~Bt : ~gt(~xi)← ∇~θt
L(~θt,~xi) // compute per-sample gradients

4 ~̃gt(~xi)← clip(~gt(~xi), C) // clip gradients to max norm C

5 ~̃gt ← 1
B

(∑
~xi∈~Bt

~̃gt(~xi) +N (0, σ2~I)
)

// add Gaussian noise with variance σ2

6 ~θt+1 ← ~θt − η~̃gt // SGD step

end

output: ~θ TN
B
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DP GNN Challenges: Exploding Sensitivity
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The number of affected outputs = O(max degreenum layers)
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DP GNN Challenges: Inference Privacy

Private Learning: Standard Neural Nets

Learning 
Algorithm

Training 
Data

Trained 
Model

Test Data

Inference
Mechanism

Differentially Private

Labels

Inference is independent of the training data
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Differentially Private GNN Challenges: Inference Privacy

I GNN re-uses graph data for inference

I Private information leaks at inference, even with a private

model

A
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A C DTest
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Differentially Private GNN Challenges: Inference Privacy

Private Learning: Graph Neural Nets

Learning 
Algorithm

Input 
Graph

Trained 
GNN

Inference
Mechanism

Differentially Private

Node 
Labels

Differentially Private

Both training and inference should be private
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Our Approach: Aggregation Perturbation

I The sensitivity of a single aggregation step is easily computed

• Only one node is affected for edge-level DP
• Maximum D nodes are affected for node-level DP (D is maximum degree)

I Aggregation Perturbation: adding noise to output of the aggregation step

• Prevents the exploding sensitivity problem by composing differentially private aggregation steps
• Ensures inference privacy

I Applying aggregation perturbation to the conventional GNNs is costly

• Every forward pass of the model consumes privacy budget
• The excessive noise results in poor performance

Need to tailor the GNN architecture to the private learning setting!
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GNN with Aggregation Perturbation (GAP)

1. Encoder Module

• Learns to encode node features into

lower-dimensional representations
• Does not use graph adjacency information

2. Aggregation Module

• Computes aggregated node representations at

multiple hops privately using the aggregation

perturbation approach
• Uses graph adjacency information

3. Classification Module

• Learns to perform node-wise classification based

on aggregated node representations
• Does not re-use graph adjacency information
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Advantages of GAP Architecture

X Edge-level DP

X Node-level DP through combination with DP-SGD

• For bounded-degree graphs

X Multi-hop aggregations

X Zero-cost inference privacy
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Privacy Analysis: Edge-Level DP

For any δ ∈ (0, 1), number of hops K ≥ 0, and noise standard deviation σ > 0,

GAP’s training algorithm satisfies edge-level (ε, δ)-DP with:

ε =
K

2σ2
+

√
2K log (1/δ)/σ
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Privacy Analysis: Node-Level DP

For any δ ∈ (0, 1), number of nodes N, batch-size 0 < B < N, number of epochs T,

gradient clipping threshold C > 0, number of hops K ≥ 0, maximum cut-off

degree D ≥ 1, and noise standard deviation σ > 0, GAP’s training algorithm

satisfies node-level (ε, δ)-DP with:

ε ≤ min
α

2T
N

B

1

α− 1
log

{(
1− B

N

)α−1 (
α
B

N
− B

N
+ 1

)
+

(
α

2

)(
B

N

)2 (
1− B

N

)α−2

e
C2

σ2

+
α∑
l=3

(
α

l

)(
1− B

N

)α−l (
B

N

)l

e(l−1)( C2 l

2σ2 )

+
DKα

2σ2
+

log(1/δ)

α− 1

s.t. α > 1.
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Experiment Settings: Datasets

I Task: Node Classification

Dataset Classes Nodes Edges Features Avg. Degree

Facebook 6
Year

26,406
User

2,117,924
Friendship

501 62

Reddit 8
Community

116,713
Post

46,233,380
Mutual User

602 209

Amazon 10
Category

1,790,731
Product

80,966,832
Mutual Purchase

100 22

16/24



Experiment Settings: Competing Methods

I Edge-Level Private Methods

• GAP-EDP: Our edge-level private method
• SAGE-EDP: Graph-SAGE with adjacency matrix perturbation [Wu et al., 2021]
• MLP: Simple MLP model that does not use the graph edges

I Node-Level Private Methods

• GAP-NDP: Our node-level private method
• SAGE-NDP: 1-layer Graph-SAGE with gradient perturbation [Daigavane et al., 2021]
• MLP-DP: Simple MLP model trained with DP-SGD

I None-Private Methods

• GAP-∞: GAP without noise
• SAGE-∞: Standard Graph-SAGE [Hamilton et al., 2017]
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Comparison of Non-Private Methods

Accuracy of Non-Private Methods

Method Facebook Reddit Amazon

GAP-∞ 80.0 ± 0.48 99.4 ± 0.02 91.2 ± 0.07

SAGE-∞ 83.2 ± 0.68 99.1 ± 0.01 92.7 ± 0.09
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Edge-Level DP Accuracy-Privacy Trade-Off
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Node-Level DP Accuracy-Privacy Trade-Off
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Effect of the Number of Hops
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Effect of the Encoder Module
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Effect of the Maximum Degree
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Conclusion

I Implementing DP in GNNs is challenging

• Exploding sensitivity
• Inference privacy

I Our contribution: GAP

• Ensures both edge-level and node-level DP
• Supports multi-hop aggregations
• Provides inference privacy
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Thank You!

Questions? sajadmanesh@idiap.ch

mailto:sajadmanesh@idiap.ch


References i

Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B., Mironov, I., Talwar, K., and Zhang, L.

(2016).

Deep learning with differential privacy.

In Proceedings of the 2016 ACM SIGSAC conference on computer and communications

security, pages 308–318.

Daigavane, A., Madan, G., Sinha, A., Thakurta, A. G., Aggarwal, G., and Jain, P. (2021).

Node-level differentially private graph neural networks.

arXiv preprint arXiv:2111.15521.

Dwork, C., McSherry, F., Nissim, K., and Smith, A. (2006).

Calibrating noise to sensitivity in private data analysis.

In Theory of cryptography conference, pages 265–284. Springer.



References ii

Hamilton, W. L., Ying, R., and Leskovec, J. (2017).

Inductive representation learning on large graphs.

In Proceedings of the 31st International Conference on Neural Information Processing

Systems, pages 1025–1035.

He, X., Jia, J., Backes, M., Gong, N. Z., and Zhang, Y. (2021a).

Stealing links from graph neural networks.

In 30th {USENIX} Security Symposium ({USENIX} Security 21).

He, X., Wen, R., Wu, Y., Backes, M., Shen, Y., and Zhang, Y. (2021b).

Node-level membership inference attacks against graph neural networks.

arXiv preprint arXiv:2102.05429.



References iii

Olatunji, I. E., Nejdl, W., and Khosla, M. (2021).

Membership inference attack on graph neural networks.

arXiv preprint arXiv:2101.06570.

Wu, F., Long, Y., Zhang, C., and Li, B. (2021).

Linkteller: Recovering private edges from graph neural networks via influence

analysis.

arXiv preprint arXiv:2108.06504.


	Thank You!
	Appendix

