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Introduction



Graphs are Ubiquitous

Knowledge Graphs
Molecules

Social Networks

Image source (from left to right): https://yashuseth.blog/2019/10/08/introduction-question-answering-knowledge-graphs-kgqa/, https://en.wikipedia.org/wiki/Terpenoid,

https://yashuseth.blog/2019/10/08/introduction-question-answering-knowledge-graphs-kgqa/ 2/33

https://towardsdatascience.com/ab-testing-challenges-in-social-networks-e67611c92916
https://en.wikipedia.org/wiki/Terpenoid
https://yashuseth.blog/2019/10/08/introduction-question-answering-knowledge-graphs-kgqa/


Graph-Based Machine Learning Tasks

Node Classification / Regression

I Given a graph, which is the class label / value of a node?

I Example: face account detection

Image Source: ”A gentle introduction to graph neural networks” by Andreas Loukas. 3/33



Graph-Based Machine Learning Tasks

Link Prediction

I Given a graph, which links are likely to form?

I Example: recommendation systems

Image source: [Ahmad et al., 2020] 4/33



Graph-Based Machine Learning Tasks

Graph Classification

I Given a graph, predict its label

I Example: antibiotic discovery

Antibiotic? Or Not

Image source: https://en.wikipedia.org/wiki/Terpenoid 5/33

https://en.wikipedia.org/wiki/Terpenoid


Graph Representation Learning

I We need to learn representation of nodes in a low-dimensional space

• Similar nodes in the graph should be mapped close to each other in the embedding space

I Graph Neural Networks (GNNs) are state-of-the-art representation learning algorithms for

graphs.

Image source: [Perozzi et al., 2014] 6/33



Privacy Concerns

I Graph data could be privacy-sensitive

• e.g., users’ personal attributes, financial transactions, medical/biological networks, . . .

I Graph-based ML algorithms are vulnerable to privacy attacks

• e.g., link stealing attack [He et al., 2021] or membership inference attack [Olatunji et al., 2021]

We need privacy-preserving machine learning algorithms for graph data!

7/33



Graph Neural Networks



GNNs Learn Node Embeddings

GNN
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Internal Structure of GNNs

A: Adjacency matrix

X: Input node features

Y: Predicted node labels

H(i): Hidden node representations of layer i

Agg: Aggregation function

• e.g., summation: Agg(H, A) = AT · H

Upd: Learnable update function

• e.g., an MLP

GNN

Layer

GNN

Layer

GNN

Layer
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GNNs Unfolded
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Privacy Attacks on GNNs



Membership Inference: Key Idea

I Exploiting the statistical difference of the posterior class probabilities between train and test

nodes
• GNNs are more confident when predicting labels for the training data
• Nodes with high output confidence are likely members of the training set

Image source: [Duddu et al., 2020] 11/33



Membership Inference: Attack Methodology

I Assumptions:

• Attacker has access to the posterior class probabilities of the GNN
• Attacker has access to a shadow graph dataset similar to the target graph

I Attack Methodology [Olatunji et al., 2021]:

12/33



Membership Inference: Attack Results

[Olatunji et al., 2021]
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Link Inference: Idea and Assumptions

Exploits the similarity of prediction posteriors for connected nodes

I If two nodes are connected, then their prediction scores are likely similar

Assumptions

I Attacker has access to the posterior class probabilities of the GNN

I Attacker has access to an auxiliary subgraph of the original graph
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Link Inference: Attack Methodology [He et al., 2021]

I Obtain the prediction scores from the target GNN for every node pair in the auxiliary graph

I Extract features from the obtained scores for each node pair

• features based on distance metrics (cosine, euclidean, etc), vector operations (average, hadamard

product, etc), and entropy

I Train an MLP using the extracted features and the link state in the auxiliary graph

I Use the trained MLP to infer the link between any node pair in the original graph
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Link Inference: Attack Results

[He et al., 2021]
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Differential Privacy



Differential Privacy

Differential Privacy [Dwork et al., 2006]

Randomized algorithm A is (ε, δ)-differentially private if for all neighboring datasets D ' D′

and all sets of outputs S:

Pr[A(D) ∈ S] ≤ e
ε Pr[A(D′) ∈ S] + δ

Neighboring

Datasets

DP Algorithm

(Randomized)

Similar Output

Distributions
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Differential Privacy

Differential Privacy [Dwork et al., 2006]

Randomized algorithm A is (ε, δ)-differentially private if for all neighboring datasets D ' D′

and all sets of outputs S:

Pr[A(D) ∈ S] ≤ e
ε Pr[A(D′) ∈ S] + δ

I The neighboring relation captures what is protected

• Standard DP: D and D′ differ by at most one record
• Edge-level DP: D and D′ are graphs differing by at most one edge
• Node-level DP: D and D′ are graphs differing by at most one node (and all its adjacent edges)

17/33



Differentially Private ML

Differentially private learning is possible with noisy gradient descent

Optimization Algorithm
(Private SGD)

Private Training
Dataset

Model ParametersDifferentially private learning is possible with 
noisy gradient descent.

71

add noise to each step 
to guarantee privacy

Stochastic Gradient Descent DP Stochastic Gradient Descent
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Differentially Private ML

DP-SGD Algorithm [Abadi et al., 2016]

input : Data {~x1 . . . ,~xN}, learning rate η, batch size B, epochs T , clipping threshold C, noise variance σ2,

1 Initialize ~θ0 randomly

for t ∈ [T · N
B
] do

2 Sample a batch ~Bt by selecting each ~xi independently with probability B
N

3 For each ~xi ∈ ~Bt : ~gt(~xi)← ∇~θt
L(~θt,~xi) // compute per-sample gradients

4 ~̃gt(~xi)← clip(~gt(~xi), C) // clip gradients to max norm C

5 ~̃gt ← 1
B

(∑
~xi∈~Bt

~̃gt(~xi) +N (0, σ2~I)
)

// add Gaussian noise with variance σ2

6 ~θt+1 ← ~θt − η~̃gt // SGD step

end

output: ~θ TN
B

19/33



Differentially Private GNNs



DP GNN Challenges: Exploding Sensitivity
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The number of affected outputs = O(max degreenum layers)

20/33



DP GNN Challenges: Exploding Sensitivity


 















































First Layer Second Layer

A

B
D

C E

F

The number of affected outputs = O(max degreenum layers)

20/33



DP GNN Challenges: Exploding Sensitivity
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DP GNN Challenges: Inference Privacy

Private Learning: Standard Neural Nets

Learning

Algorithm

Training

Data

Trained

Model

Test Data

Inference
Mechanism

Differentially Private

Labels

Inference is independent of the training data
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Differentially Private GNN Challenges: Inference Privacy

I GNN re-uses graph data for inference

I Private information leaks at inference, even with a private

model

A
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Train B E F

A C DTest
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Differentially Private GNN Challenges: Inference Privacy

Private Learning: Graph Neural Nets

Learning

Algorithm

Input

Graph

Trained

GNN

Inference
Mechanism

Differentially Private

Node

Labels

Differentially Private

Both training and inference should be private
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Our Approach: Aggregation Perturbation

I Aggregation Perturbation: adding noise to output of the aggregation step

• Prevents the exploding sensitivity problem by composing differentially private aggregation steps
• Ensures inference privacy

I Applying aggregation perturbation to the conventional GNNs is costly

• Every forward pass of the model consumes privacy budget
• The excessive noise results in poor performance

Need to tailor the GNN architecture to the private learning setting!
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GNN with Aggregation Perturbation (GAP) [Sajadmanesh et al., 2022]

1. Encoder Module

• Learns to encode node features into

lower-dimensional representations
• Does not use graph adjacency information

2. Aggregation Module

• Computes aggregated node representations at

multiple hops privately using the aggregation

perturbation approach
• Uses graph adjacency information

3. Classification Module

• Learns to perform node-wise classification based

on aggregated node representations
• Does not re-use graph adjacency information
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Advantages of GAP Architecture

X Edge-level DP

X Node-level DP through combination with DP-SGD

• For bounded-degree graphs

X Multi-hop aggregations

X Zero-cost inference privacy
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Experiment Settings: Datasets

I Task: Node Classification

Dataset Classes Nodes Edges Features Avg. Degree

Facebook 6
Year

26,406
User

2,117,924
Friendship

501 62

Reddit 8
Community

116,713
Post

46,233,380
Mutual User

602 209

Amazon 10
Category

1,790,731
Product

80,966,832
Mutual Purchase

100 22
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Comparison of Non-Private Methods

Accuracy of Non-Private Methods

Method Facebook Reddit Amazon

GAP-∞ 80.0 ± 0.48 99.4 ± 0.02 91.2 ± 0.07

SAGE-∞ 83.2 ± 0.68 99.1 ± 0.01 92.7 ± 0.09
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Edge-Level DP Accuracy-Privacy Trade-Off
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Node-Level DP Accuracy-Privacy Trade-Off
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Resiliency to Membership Inference Attack

Mean AUC of node-level membership inference attack.

Dataset Method ε = 1 ε = 2 ε = 4 ε = 8 ε = 16 ε =∞

GAP-NDP 50.16 50.25 50.61 51.11 52.66 81.67

Facebook SAGE-NDP 50.25 50.20 50.23 50.17 50.20 62.49

MLP-DP 50.32 50.72 52.13 53.44 54.77 81.57
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Conclusion and Future Work



Conclusion

I GNNs leak private information

• They are vulnerable to privacy attacks

I Implementing DP in GNNs is challenging

• Exploding sensitivity
• Inference privacy

I Our Differentially Private GNN: GAP

• Ensures both edge-level and node-level DP
• Supports multi-hop aggregations
• Provides inference privacy
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Open Problems

I How to achieve DP in more expressive GNN architectures?

I How to achieve DP in link-level or graph-level tasks?

I How to achieve DP in dynamically changing graphs?

I How to achieve DP in heterogeneous graphs (e.g., knowledge graphs)?
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Thank You!

Questions? sajadmanesh@idiap.ch

mailto:sajadmanesh@idiap.ch
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