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Graphs are Ubiquitous

Knowledge Graphs
Molecules

Social Networks

Image source (from left to right): https://yashuseth.blog/2019/10/08/introduction-question-answering-knowledge-graphs-kgqa/, https://en.wikipedia.org/wiki/Terpenoid,
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Graph Representation Learning

I We need to learn representation of nodes in a low-dimensional space

• Similar nodes in the graph should be mapped close to each other in the embedding space

I Graph Neural Networks (GNNs) are state-of-the-art representation learning algorithms for

graphs.
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Privacy Concerns

I Graph data could be privacy-sensitive

• e.g., users’ personal attributes, financial transactions, medical/biological networks, . . .

I Graph-based ML algorithms are vulnerable to privacy attacks

• e.g., link stealing attack [He et al., 2021] or membership inference attack [Olatunji et al., 2021]

We need privacy-preserving machine learning algorithms for graph data!
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Differential Privacy

Differential Privacy [Dwork et al., 2006]

Randomized algorithm A is (ε, δ)-differentially private if for all neighboring datasets D ' D′

and all sets of outputs S:

Pr[A(D) ∈ S] ≤ e
ε Pr[A(D′) ∈ S] + δ

Neighboring

Datasets

DP Algorithm

(Randomized)

Similar Output

Distributions
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Differential Privacy

Differential Privacy [Dwork et al., 2006]

Randomized algorithm A is (ε, δ)-differentially private if for all neighboring datasets D ' D′

and all sets of outputs S:

Pr[A(D) ∈ S] ≤ e
ε Pr[A(D′) ∈ S] + δ

I The neighboring relation captures what is protected

• Standard DP: D and D′ differ by at most one record
• Edge-level DP: D and D′ are graphs differing by at most one edge
• Node-level DP: D and D′ are graphs differing by at most one node (and all its adjacent edges)
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Differentially Private ML

DP-SGD Algorithm [Abadi et al., 2016]

input : Data {~x1 . . . ,~xN}, learning rate η, batch size B, epochs T , clipping threshold C, noise variance σ2,

1 Initialize ~θ0 randomly

for t ∈ [T · N
B
] do

2 Sample a batch ~Bt by selecting each ~xi independently with probability B
N

3 For each ~xi ∈ ~Bt : ~gt(~xi)← ∇~θt
L(~θt,~xi) // compute per-sample gradients

4 ~̃gt(~xi)← clip(~gt(~xi), C) // clip gradients to max norm C

5 ~̃gt ← 1
B

(∑
~xi∈~Bt

~̃gt(~xi) +N (0, σ2~I)
)

// add Gaussian noise with variance σ2

6 ~θt+1 ← ~θt − η~̃gt // SGD step

end

output: ~θ TN
B
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GNNs Learn Node Embeddings

GNN
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Internal Structure of GNNs

A: Adjacency matrix

X: Input node features

Y: Predicted node labels

H(i): Hidden node representations of layer i

Agg: Aggregation function

• e.g., summation: Agg(H, A) = AT · H

Upd: Learnable update function

• e.g., an MLP

GNN

Layer

GNN

Layer

GNN

Layer
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DP GNN Challenges: Exploding Sensitivity
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The number of affected outputs = O(max degreenum layers)
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DP GNN Challenges: Inference Privacy

Private Learning: Standard Neural Nets

Learning

Algorithm

Training

Data

Trained

Model

Test Data

Inference
Mechanism

Differentially Private

Labels

Inference is independent of the training data
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Differentially Private GNN Challenges: Inference Privacy

I GNN re-uses graph data for inference

I Private information leaks at inference, even with a private

model

A
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Train B E F

A C DTest

10/20



Differentially Private GNN Challenges: Inference Privacy

Private Learning: Graph Neural Nets

Learning

Algorithm

Input

Graph

Trained

GNN

Inference
Mechanism

Differentially Private

Node

Labels

Differentially Private

Both training and inference should be private
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Our Approach: Aggregation Perturbation

I Aggregation Perturbation: adding noise to output of the aggregation step

• Prevents the exploding sensitivity problem by composing differentially private aggregation steps
• Ensures inference privacy

I Applying aggregation perturbation to the conventional GNNs is costly

• Every forward pass of the model consumes privacy budget
• The excessive noise results in poor performance

Need to tailor the GNN architecture to the private learning setting!
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GNN with Aggregation Perturbation (GAP) [Sajadmanesh et al., 2022]

1. Encoder Module

• Learns to encode node features into

lower-dimensional representations
• Does not use graph adjacency information

2. Aggregation Module

• Computes aggregated node representations at

multiple hops privately using the aggregation

perturbation approach
• Uses graph adjacency information

3. Classification Module

• Learns to perform node-wise classification based

on aggregated node representations
• Does not re-use graph adjacency information
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Advantages of GAP Architecture

X Edge-level DP

X Node-level DP through combination with DP-SGD

• For bounded-degree graphs

X Multi-hop aggregations

X Zero-cost inference privacy
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Experiment Settings: Datasets

I Task: Node Classification

Dataset Classes Nodes Edges Features Med. Degree

Facebook 6
Year

26,406
User

2,117,924
Friendship

501 62

Reddit 8
Community

116,713
Post

46,233,380
Mutual User

602 209

Amazon 10
Category

1,790,731
Product

80,966,832
Mutual Purchase

100 22
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Comparison of Non-Private Methods

Accuracy of Non-Private Methods

Method Facebook Reddit Amazon

GAP-∞ 80.0 ± 0.48 99.4 ± 0.02 91.2 ± 0.07

SAGE-∞ 83.2 ± 0.68 99.1 ± 0.01 92.7 ± 0.09
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Edge-Level DP Accuracy-Privacy Trade-Off
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Node-Level DP Accuracy-Privacy Trade-Off
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Resiliency to Membership Inference Attack

Mean AUC of node-level membership inference attack.

Dataset Method ε = 1 ε = 2 ε = 4 ε = 8 ε = 16 ε =∞

GAP-NDP 50.16 50.25 50.61 51.11 52.66 81.67

Facebook SAGE-NDP 50.25 50.20 50.23 50.17 50.20 62.49

MLP-DP 50.32 50.72 52.13 53.44 54.77 81.57
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Conclusion

I GNNs leak private information

• They are vulnerable to privacy attacks

I Implementing DP in GNNs is challenging

• Exploding sensitivity
• Inference privacy

I Our Differentially Private GNN: GAP

• Ensures both edge-level and node-level DP
• Supports multi-hop aggregations
• Provides inference privacy
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Thank You!

Questions? sajadmanesh@idiap.ch

mailto:sajadmanesh@idiap.ch
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