
Deep Learning on Graphs with Differential Privacy

Sina Sajadmanesh

Idiap Research Institute

Swiss Federal Institute of Technology Lausanne (EPFL)

Joint work with Ali Shahin Shamsabadi, Aurélien Bellet, and Daniel Gatica-Perez

Imperial College London, March 2023

Graphs are Ubiquitous

Knowledge Graphs
Molecules

Social Networks

Image source (from left to right): https://yashuseth.blog/2019/10/08/introduction-question-answering-knowledge-graphs-kgqa/, https://en.wikipedia.org/wiki/Terpenoid,

https://yashuseth.blog/2019/10/08/introduction-question-answering-knowledge-graphs-kgqa/ 1/20

https://towardsdatascience.com/ab-testing-challenges-in-social-networks-e67611c92916
https://en.wikipedia.org/wiki/Terpenoid
https://yashuseth.blog/2019/10/08/introduction-question-answering-knowledge-graphs-kgqa/

Graph Representation Learning

I We need to learn representation of nodes in a low-dimensional space

• Similar nodes in the graph should be mapped close to each other in the embedding space

I Graph Neural Networks (GNNs) are state-of-the-art representation learning algorithms for

graphs.

Image source: [Perozzi et al., 2014] 2/20

Privacy Concerns

I Graph data could be privacy-sensitive

• e.g., users’ personal attributes, financial transactions, medical/biological networks, . . .

I Graph-based ML algorithms are vulnerable to privacy attacks

• e.g., link stealing attack [He et al., 2021] or membership inference attack [Olatunji et al., 2021]

We need privacy-preserving machine learning algorithms for graph data!

3/20

Differential Privacy

Differential Privacy [Dwork et al., 2006]

Randomized algorithm A is (ε, δ)-differentially private if for all neighboring datasets D ' D′

and all sets of outputs S:

Pr[A(D) ∈ S] ≤ e
ε Pr[A(D′) ∈ S] + δ

Neighboring

Datasets

DP Algorithm

(Randomized)

Similar Output

Distributions

4/20

Differential Privacy

Differential Privacy [Dwork et al., 2006]

Randomized algorithm A is (ε, δ)-differentially private if for all neighboring datasets D ' D′

and all sets of outputs S:

Pr[A(D) ∈ S] ≤ e
ε Pr[A(D′) ∈ S] + δ

I The neighboring relation captures what is protected

• Standard DP: D and D′ differ by at most one record
• Edge-level DP: D and D′ are graphs differing by at most one edge
• Node-level DP: D and D′ are graphs differing by at most one node (and all its adjacent edges)

4/20

Differentially Private ML

DP-SGD Algorithm [Abadi et al., 2016]

input : Data {~x1 . . . ,~xN}, learning rate η, batch size B, epochs T , clipping threshold C, noise variance σ2,

1 Initialize ~θ0 randomly

for t ∈ [T · N
B
] do

2 Sample a batch ~Bt by selecting each ~xi independently with probability B
N

3 For each ~xi ∈ ~Bt : ~gt(~xi)← ∇~θt
L(~θt,~xi) // compute per-sample gradients

4 ~̃gt(~xi)← clip(~gt(~xi), C) // clip gradients to max norm C

5 ~̃gt ← 1
B

(∑
~xi∈~Bt

~̃gt(~xi) +N (0, σ2~I)
)

// add Gaussian noise with variance σ2

6 ~θt+1 ← ~θt − η~̃gt // SGD step

end

output: ~θ TN
B

5/20

GNNs Learn Node Embeddings

GNN

0.7
0.3

0.5
0.5

0.4
0.6

0.1
0.9

A

B

D

C

E

F

0.8
0.2

0.4
0.6

A

B
D

C E

F
0.1
0.5
0.7
0.8

0.3
0.1
0.4
0.9

0.0
0.9
0.6
0.1

0.4
0.2
0.8
0.3

0.5
0.0
0.2
0.8

0.6
0.2
0.3
0.4

6/20

Internal Structure of GNNs

A: Adjacency matrix

X: Input node features

Y: Predicted node labels

H(i): Hidden node representations of layer i

Agg: Aggregation function

• e.g., summation: Agg(H, A) = AT · H

Upd: Learnable update function

• e.g., an MLP

GNN

Layer

GNN

Layer

GNN

Layer

7/20

DP GNN Challenges: Exploding Sensitivity

First Layer Second Layer

A

B
D

C E

F

The number of affected outputs = O(max degreenum layers)

8/20

DP GNN Challenges: Exploding Sensitivity

First Layer Second Layer

A

B
D

C E

F

The number of affected outputs = O(max degreenum layers)

8/20

DP GNN Challenges: Exploding Sensitivity

First Layer Second Layer

A

B
D

C E

F

The number of affected outputs = O(max degreenum layers)

8/20

DP GNN Challenges: Inference Privacy

Private Learning: Standard Neural Nets

Learning

Algorithm

Training

Data

Trained

Model

Test Data

Inference
Mechanism

Differentially Private

Labels

Inference is independent of the training data

9/20

Differentially Private GNN Challenges: Inference Privacy

I GNN re-uses graph data for inference

I Private information leaks at inference, even with a private

model

A

B
D

C E

F

Train B E F

A C DTest

10/20

Differentially Private GNN Challenges: Inference Privacy

Private Learning: Graph Neural Nets

Learning

Algorithm

Input

Graph

Trained

GNN

Inference
Mechanism

Differentially Private

Node

Labels

Differentially Private

Both training and inference should be private

11/20

Our Approach: Aggregation Perturbation

I Aggregation Perturbation: adding noise to output of the aggregation step

• Prevents the exploding sensitivity problem by composing differentially private aggregation steps
• Ensures inference privacy

I Applying aggregation perturbation to the conventional GNNs is costly

• Every forward pass of the model consumes privacy budget
• The excessive noise results in poor performance

Need to tailor the GNN architecture to the private learning setting!

12/20

Our Approach: Aggregation Perturbation

I Aggregation Perturbation: adding noise to output of the aggregation step

• Prevents the exploding sensitivity problem by composing differentially private aggregation steps
• Ensures inference privacy

I Applying aggregation perturbation to the conventional GNNs is costly

• Every forward pass of the model consumes privacy budget
• The excessive noise results in poor performance

Need to tailor the GNN architecture to the private learning setting!

12/20

GNN with Aggregation Perturbation (GAP) [Sajadmanesh et al., 2022]

1. Encoder Module

• Learns to encode node features into

lower-dimensional representations
• Does not use graph adjacency information

2. Aggregation Module

• Computes aggregated node representations at

multiple hops privately using the aggregation

perturbation approach
• Uses graph adjacency information

3. Classification Module

• Learns to perform node-wise classification based

on aggregated node representations
• Does not re-use graph adjacency information

MLP Softmax

aggregate

perturb

normalize

aggregate

perturb

normalizenormalize

MLP MLP MLP

combine

MLP

A
ggregation

M

odule
C

lassification

M

odule
E

ncoder

M

odule

1
2

3

Cache

13/20

GNN with Aggregation Perturbation (GAP) [Sajadmanesh et al., 2022]

1. Encoder Module

• Learns to encode node features into

lower-dimensional representations
• Does not use graph adjacency information

2. Aggregation Module

• Computes aggregated node representations at

multiple hops privately using the aggregation

perturbation approach
• Uses graph adjacency information

3. Classification Module

• Learns to perform node-wise classification based

on aggregated node representations
• Does not re-use graph adjacency information

MLP Softmax

aggregate

perturb

normalize

aggregate

perturb

normalizenormalize

MLP MLP MLP

combine

MLP

A
ggregation

M

odule
C

lassification

M

odule
E

ncoder

M

odule

1
2

3

Cache

13/20

GNN with Aggregation Perturbation (GAP) [Sajadmanesh et al., 2022]

1. Encoder Module

• Learns to encode node features into

lower-dimensional representations
• Does not use graph adjacency information

2. Aggregation Module

• Computes aggregated node representations at

multiple hops privately using the aggregation

perturbation approach
• Uses graph adjacency information

3. Classification Module

• Learns to perform node-wise classification based

on aggregated node representations
• Does not re-use graph adjacency information

MLP Softmax

aggregate

perturb

normalize

aggregate

perturb

normalizenormalize

MLP MLP MLP

combine

MLP

A
ggregation

M

odule
C

lassification

M

odule
E

ncoder

M

odule

1
2

3

Cache

13/20

GNN with Aggregation Perturbation (GAP) [Sajadmanesh et al., 2022]

1. Encoder Module

• Learns to encode node features into

lower-dimensional representations
• Does not use graph adjacency information

2. Aggregation Module

• Computes aggregated node representations at

multiple hops privately using the aggregation

perturbation approach
• Uses graph adjacency information

3. Classification Module

• Learns to perform node-wise classification based

on aggregated node representations
• Does not re-use graph adjacency information

MLP Softmax

aggregate

perturb

normalize

aggregate

perturb

normalizenormalize

MLP MLP MLP

combine

MLP

A
ggregation

M

odule
C

lassification

M

odule
E

ncoder

M

odule

1
2

3

Cache

13/20

Advantages of GAP Architecture

X Edge-level DP

X Node-level DP through combination with DP-SGD

• For bounded-degree graphs

X Multi-hop aggregations

X Zero-cost inference privacy

MLP Softmax

aggregate

perturb

normalize

aggregate

perturb

normalizenormalize

MLP MLP MLP

combine

MLP

A
ggregation

M

odule
C

lassification

M

odule
E

ncoder

M

odule

1
2

3

Cache

14/20

Advantages of GAP Architecture

X Edge-level DP

X Node-level DP through combination with DP-SGD

• For bounded-degree graphs

X Multi-hop aggregations

X Zero-cost inference privacy

MLP Softmax

aggregate

perturb

normalize

aggregate

perturb

normalizenormalize

MLP MLP MLP

combine

MLP

A
ggregation

M

odule
C

lassification

M

odule
E

ncoder

M

odule

1
2

3

Cache

14/20

Advantages of GAP Architecture

X Edge-level DP

X Node-level DP through combination with DP-SGD

• For bounded-degree graphs

X Multi-hop aggregations

X Zero-cost inference privacy

MLP Softmax

aggregate

perturb

normalize

aggregate

perturb

normalizenormalize

MLP MLP MLP

combine

MLP

A
ggregation

M

odule
C

lassification

M

odule
E

ncoder

M

odule

1
2

3

Cache

14/20

Advantages of GAP Architecture

X Edge-level DP

X Node-level DP through combination with DP-SGD

• For bounded-degree graphs

X Multi-hop aggregations

X Zero-cost inference privacy

MLP Softmax

aggregate

perturb

normalize

aggregate

perturb

normalizenormalize

MLP MLP MLP

combine

MLP

A
ggregation

M

odule
C

lassification

M

odule
E

ncoder

M

odule

1
2

3

Cache

14/20

Experiment Settings: Datasets

I Task: Node Classification

Dataset Classes Nodes Edges Features Med. Degree

Facebook 6
Year

26,406
User

2,117,924
Friendship

501 62

Reddit 8
Community

116,713
Post

46,233,380
Mutual User

602 209

Amazon 10
Category

1,790,731
Product

80,966,832
Mutual Purchase

100 22

15/20

Comparison of Non-Private Methods

Accuracy of Non-Private Methods

Method Facebook Reddit Amazon

GAP-∞ 80.0 ± 0.48 99.4 ± 0.02 91.2 ± 0.07

SAGE-∞ 83.2 ± 0.68 99.1 ± 0.01 92.7 ± 0.09

16/20

Edge-Level DP Accuracy-Privacy Trade-Off

0.1 0.2 0.5 1.0 2.0 4.0 8.0
Privacy Cost ()

40

60

80

100

A
cc

ur
ac

y
(%

)

Facebook

0.1 0.2 0.5 1.0 2.0 4.0 8.0
Privacy Cost ()

40

60

80

100
Reddit

GAP- MLP GAP-EDP SAGE-EDP

0.1 0.2 0.5 1.0 2.0 4.0 8.0
Privacy Cost ()

40

60

80

100
Amazon

17/20

Node-Level DP Accuracy-Privacy Trade-Off

1 2 4 8 16
Privacy Cost ()

0

25

50

75

100

A
cc

ur
ac

y
(%

)

Facebook

1 2 4 8 16
Privacy Cost ()

0

25

50

75

100
Reddit

GAP- MLP-DP GAP-NDP SAGE-NDP

1 2 4 8 16
Privacy Cost ()

0

25

50

75

100
Amazon

18/20

Resiliency to Membership Inference Attack

Mean AUC of node-level membership inference attack.

Dataset Method ε = 1 ε = 2 ε = 4 ε = 8 ε = 16 ε =∞

GAP-NDP 50.16 50.25 50.61 51.11 52.66 81.67

Facebook SAGE-NDP 50.25 50.20 50.23 50.17 50.20 62.49

MLP-DP 50.32 50.72 52.13 53.44 54.77 81.57

19/20

Conclusion

I GNNs leak private information

• They are vulnerable to privacy attacks

I Implementing DP in GNNs is challenging

• Exploding sensitivity
• Inference privacy

I Our Differentially Private GNN: GAP

• Ensures both edge-level and node-level DP
• Supports multi-hop aggregations
• Provides inference privacy

20/20

Thank You!

Questions? sajadmanesh@idiap.ch

mailto:sajadmanesh@idiap.ch

References i

Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B., Mironov, I., Talwar, K., and Zhang, L.

(2016).

Deep learning with differential privacy.

In Proceedings of the 2016 ACM SIGSAC conference on computer and communications

security, pages 308–318.

Dwork, C., McSherry, F., Nissim, K., and Smith, A. (2006).

Calibrating noise to sensitivity in private data analysis.

In Theory of cryptography conference, pages 265–284. Springer.

He, X., Jia, J., Backes, M., Gong, N. Z., and Zhang, Y. (2021).

Stealing links from graph neural networks.

In 30th {USENIX} Security Symposium ({USENIX} Security 21).

References ii

Olatunji, I. E., Nejdl, W., and Khosla, M. (2021).

Membership inference attack on graph neural networks.

arXiv preprint arXiv:2101.06570.

Perozzi, B., Al-Rfou, R., and Skiena, S. (2014).

Deepwalk: Online learning of social representations.

In Proceedings of the 20th ACM SIGKDD international conference on Knowledge

discovery and data mining, pages 701–710.

Sajadmanesh, S., Shamsabadi, A. S., Bellet, A., and Gatica-Perez, D. (2022).

Gap: Differentially private graph neural networks with aggregation perturbation.

arXiv preprint arXiv:2203.00949.

	Thank You!
	Appendix

