

DEEP LEARNING ON GRAPHS WITH DIFFERENTIAL PRIVACY

Sina Sajadmanesh Idiap Research Institute Swiss Federal Institute of Technology Lausanne (EPFL)

Joint work with Ali Shahin Shamsabadi, Aurélien Bellet, and Daniel Gatica-Perez

Sony AI PPML Job Talk, May 2023

GRAPHS ARE UBIQUITOUS

Knowledge Graphs

Molecules

Social Networks

Image source (from left to right): https://yashuseth.blog/2019/10/08/introduction-question-answering-knowledge-graphs-kgqa/, https://en.wikipedia.org/wiki/Terpenoid, https://yashuseth.blog/2019/10/08/introduction-question-answering-knowledge-graphs-kgqa/

GRAPH NEURAL NETWORKS

- ▶ We need to learn representation of nodes in a low-dimensional space
 - Similar nodes in the graph should be mapped close to each other in the embedding space
- Graph Neural Networks (GNNs) are state-of-the-art representation learning algorithms for graphs.

► Graph data could be privacy-sensitive

• e.g., social relationships, financial transactions, medical/biological networks, ...

► Graph data could be privacy-sensitive

- e.g., social relationships, financial transactions, medical/biological networks, . . .
- ► Graph-based ML algorithms are vulnerable to privacy attacks
 - e.g., link stealing attack [He et al., 2021] or membership inference attack [Olatunji et al., 2021]

► Graph data could be privacy-sensitive

- e.g., social relationships, financial transactions, medical/biological networks, . . .
- ► Graph-based ML algorithms are vulnerable to privacy attacks
 - e.g., link stealing attack [He et al., 2021] or membership inference attack [Olatunji et al., 2021]

We need privacy-preserving machine learning algorithms for graph data!

Differential Privacy [Dwork et al., 2006]

Randomized algorithm A is ϵ -DP if for all **neighboring** graphs $G \simeq G'$ and all sets of outputs S:

 $\Pr[A(G) \in S] \le e^{\epsilon} \Pr[A(G') \in S]$

Edge-Level DP

Neighboring graphs differ by at most one edge

Node-Level DP

Neighboring graphs differ by at most one node (and all adjacent edges)

- A: Adjacency matrix
- X: Input node features
- Y: Predicted node labels
- H⁽ⁱ⁾: Hidden node representations of layer *i* **AGG**: Aggregation function
 - e.g., summation: $AGG(H, A) = A^T \cdot H$
- **UPD**: Learnable update function
 - e.g., an MLP

DP GNN CHALLENGES: WHY NOT DP-SGD?

Exploding Sensitivity

- With a K-layer GNN, each node affects the embedding of all the nodes in its K-hop neighborhood
- $O(D^K)$ gradient terms change at once (*D* is maximum degree)

DP GNN CHALLENGES: WHY NOT DP-SGD?

Exploding Sensitivity

- With a K-layer GNN, each node affects the embedding of all the nodes in its K-hop neighborhood
- $O(D^K)$ gradient terms change at once (*D* is maximum degree)

Inference Privacy

- GNNs query the graph structure during inference
- Private information leaks at inference, even with a private model

DP GNN CHALLENGES: WHY NOT DP-SGD?

Exploding Sensitivity

- With a K-layer GNN, each node affects the embedding of all the nodes in its K-hop neighborhood
- $O(D^K)$ gradient terms change at once (*D* is maximum degree)

Inference Privacy

- GNNs query the graph structure during inference
- Private information leaks at inference, even with a private model

DP-SGD cannot be directly applied to GNNs

OUR APPROACH: AGGREGATION PERTURBATION

- Aggregation Perturbation: adding noise to output of the aggregation step
 - Prevents the exploding sensitivity problem by composing differentially private aggregation steps
 - Ensures inference privacy

OUR APPROACH: AGGREGATION PERTURBATION

• Aggregation Perturbation: adding noise to output of the aggregation step

- Prevents the exploding sensitivity problem by composing differentially private aggregation steps
- Ensures inference privacy
- Applying aggregation perturbation to the conventional GNNs is costly
 - Every forward pass of the model consumes privacy budget
 - The excessive noise results in poor performance

OUR APPROACH: AGGREGATION PERTURBATION

• Aggregation Perturbation: adding noise to output of the aggregation step

- Prevents the exploding sensitivity problem by composing differentially private aggregation steps
- Ensures inference privacy
- Applying aggregation perturbation to the conventional GNNs is costly
 - Every forward pass of the model consumes privacy budget
 - The excessive noise results in poor performance

We decouple the aggregation operations from the model parameters to maintain the privacy budget

GNN with Aggregation Perturbation (GAP)

Advantages of GAP Architecture

✓ Edge-level DP

Advantages of GAP Architecture

- ✓ Edge-level DP
- $\checkmark~$ Node-level DP through combination with DP-SGD
 - For bounded-degree graphs

Advantages of GAP Architecture

- ✓ Edge-level DP
- \checkmark Node-level DP through combination with DP-SGD
 - For bounded-degree graphs
- ✓ Multi-hop aggregations

ADVANTAGES OF GAP ARCHITECTURE

- ✓ Edge-level DP
- \checkmark Node-level DP through combination with DP-SGD
 - For bounded-degree graphs
- ✓ Multi-hop aggregations
- $\checkmark~$ Zero-cost inference privacy

- ► Task: Node Classification
- ► Baselines: MLP, GraphSAGE

DATASET	CLASSES	Nodes	Edges	Features	Med. Degree	
Facebook	6 Year	26,406 User	2,117,924 Friendship	501	62	
Reddit	8 Community	116,713 Розт	46,233,380 Mutual User	602	209	
Amazon	10 Category	1,790,731 Product	80,966,832 Mutual Purchase	100	22	

Accuracy of Non-Private Methods

Method	Facebook	Reddit	Amazon	
${ m GAP-}\infty$ sage- ∞	80.0 ± 0.48	99.4 ± 0.02	91.2 ± 0.07	
	83.2 ± 0.68	99.1 ± 0.01	92.7 ± 0.09	

EDGE-LEVEL DP ACCURACY-PRIVACY TRADE-OFF

NODE-LEVEL DP ACCURACY-PRIVACY TRADE-OFF

Mean AUC of node-level membership inference attack.

DATASET	Method	$\epsilon = 1$	$\epsilon = 2$	$\epsilon = 4$	$\epsilon = 8$	$\epsilon = 16$	$\epsilon = \infty$
Facebook	GAP-NDP	50.16	50.25	50.61	51.11	52.66	81.67
Reddit	GAP-NDP	50.04	50.39	51.20	52.23	52.54	54.97
Amazon	GAP-NDP	50.06	50.23	50.54	51.53	51.72	66.68

CONCLUSION

- ► GNNs leak private information
 - They are vulnerable to privacy attacks
- ► Implementing DP in GNNs is challenging
 - Exploding sensitivity
 - Inference privacy
- ► Our Differentially Private GNN: GAP
 - Ensures both edge-level and node-level DP
 - Supports multi-hop aggregations
 - Provides inference privacy

CONCLUSION

- ► GNNs leak private information
 - They are vulnerable to privacy attacks
- Implementing DP in GNNs is challenging
 - Exploding sensitivity
 - Inference privacy
- ► Our Differentially Private GNN: GAP
 - Ensures both edge-level and node-level DP
 - Supports multi-hop aggregations
 - Provides inference privacy

THANK YOU !

Questions?

Dwork, C., McSherry, F., Nissim, K., and Smith, A. (2006).
 Calibrating noise to sensitivity in private data analysis.
 In Theory of cryptography conference, pages 265–284. Springer.

- He, X., Jia, J., Backes, M., Gong, N. Z., and Zhang, Y. (2021).
 Stealing links from graph neural networks.
 In 30th {USENIX} Security Symposium ({USENIX} Security 21).
- Olatunji, I. E., Nejdl, W., and Khosla, M. (2021).
 Membership inference attack on graph neural networks. arXiv preprint arXiv:2101.06570.

Perozzi, B., Al-Rfou, R., and Skiena, S. (2014). Deepwalk: Online learning of social representations.

In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 701–710.

EFFECT OF THE NUMBER OF HOPS

EFFECT OF THE ENCODER MODULE

EFFECT OF THE MAXIMUM DEGREE

