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Graphs are Ubiquitous

Knowledge Graphs
Molecules

Social Networks

Image source (from left to right): https://yashuseth.blog/2019/10/08/introduction-question-answering-knowledge-graphs-kgqa/, https://en.wikipedia.org/wiki/Terpenoid,
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https://towardsdatascience.com/ab-testing-challenges-in-social-networks-e67611c92916
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Graph Neural Networks

I We need to learn representation of nodes in a low-dimensional space

• Similar nodes in the graph should be mapped close to each other in the embedding space

I Graph Neural Networks (GNNs) are state-of-the-art representation learning algorithms for

graphs.

Image source: [Perozzi et al., 2014] 2/15



Privacy Concerns

I Graph data could be privacy-sensitive

• e.g., social relationships, financial transactions, medical/biological networks, . . .

I Graph-based ML algorithms are vulnerable to privacy attacks

• e.g., link stealing attack [He et al., 2021] or membership inference attack [Olatunji et al., 2021]

We need privacy-preserving machine learning algorithms for graph data!
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Differential Privacy for Graphs

Differential Privacy [Dwork et al., 2006]

Randomized algorithm A is ε-DP if for all neighboring graphs G ' G′ and all sets of outputs S:

Pr[A(G) ∈ S] ≤ e
ε Pr[A(G′) ∈ S]

I Edge-Level DP

Neighboring graphs differ by at most

one edge

I Node-Level DP

Neighboring graphs differ by at most

one node (and all adjacent edges)

Neighboring 
Graphs

DP Algorithm 
(Randomized)

Similar Output 
Distributions
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Graph Neural Networks

A: Adjacency matrix

X: Input node features

Y: Predicted node labels

H(i): Hidden node representations of layer i

Agg: Aggregation function

• e.g., summation: Agg(H, A) = AT · H

Upd: Learnable update function

• e.g., an MLP

GNN 
Layer

GNN 
Layer

GNN 
Layer
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DP GNN Challenges: Why Not DP-SGD?

I Exploding Sensitivity

• With a K-layer GNN, each node affects the embedding of all the nodes in its K-hop neighborhood
• O(DK) gradient terms change at once (D is maximum degree)

I Inference Privacy

• GNNs query the graph structure during inference
• Private information leaks at inference, even with a private model

DP-SGD cannot be directly applied to GNNs
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Our Approach: Aggregation Perturbation

I Aggregation Perturbation: adding noise to output of the aggregation step

• Prevents the exploding sensitivity problem by composing differentially private aggregation steps
• Ensures inference privacy

I Applying aggregation perturbation to the conventional GNNs is costly

• Every forward pass of the model consumes privacy budget
• The excessive noise results in poor performance

We decouple the aggregation operations from the model parameters

to maintain the privacy budget
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GNN with Aggregation Perturbation (GAP)
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Advantages of GAP Architecture

X Edge-level DP

X Node-level DP through combination with DP-SGD

• For bounded-degree graphs

X Multi-hop aggregations

X Zero-cost inference privacy
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Experiment Settings

I Task: Node Classification

I Baselines: MLP, GraphSAGE

Dataset Classes Nodes Edges Features Med. Degree

Facebook 6
Year

26,406
User

2,117,924
Friendship

501 62

Reddit 8
Community

116,713
Post

46,233,380
Mutual User

602 209

Amazon 10
Category

1,790,731
Product

80,966,832
Mutual Purchase

100 22
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Comparison of Non-Private Methods

Accuracy of Non-Private Methods

Method Facebook Reddit Amazon

GAP-∞ 80.0 ± 0.48 99.4 ± 0.02 91.2 ± 0.07

SAGE-∞ 83.2 ± 0.68 99.1 ± 0.01 92.7 ± 0.09

11/15



Edge-Level DP Accuracy-Privacy Trade-Off
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Node-Level DP Accuracy-Privacy Trade-Off
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Resiliency to Membership Inference Attack

Mean AUC of node-level membership inference attack.

Dataset Method ε = 1 ε = 2 ε = 4 ε = 8 ε = 16 ε = ∞

Facebook GAP-NDP 50.16 50.25 50.61 51.11 52.66 81.67

Reddit GAP-NDP 50.04 50.39 51.20 52.23 52.54 54.97

Amazon GAP-NDP 50.06 50.23 50.54 51.53 51.72 66.68

14/15



Conclusion

I GNNs leak private information

• They are vulnerable to privacy attacks

I Implementing DP in GNNs is challenging

• Exploding sensitivity
• Inference privacy

I Our Differentially Private GNN: GAP

• Ensures both edge-level and node-level DP
• Supports multi-hop aggregations
• Provides inference privacy

Thank You !

Questions?
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Effect of the Number of Hops
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Effect of the Encoder Module
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Effect of the Maximum Degree
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